An Nille

Multigrid Tutorial

Van Emden Henson

Center for Applied Scientific Computing Lawrence Livermore National Laboratory

vhenson@llnl.gov

http://www.casc.gov/CASC/people/henson

April 10, 1999

AMG: What is Algebraic Multigrid??

- Any multilevel method where geometry is not used (and may not be available) to build coarse grids, interpolation and restriction, or coarse-grid operators.
- "Classical" AMG was introduced by Brandt, McCormick and Ruge in 1982. It was explored early on by Stueben in 1983, and popularized by Ruge and Stuben in 1987.
- This tutorial will describe only the classical AMG algorithm.

AMG: What is Algebraic Multigrid??

- Many other algorithms qualify under the definition given. Some whose approaches are closely related to "classical AMG":
 - Chang
 - Griebel, Neunhoeffer, Regler
 - Huang
 - Krechel, Stueben
 - Zaslavsky
- Work close to the original, but using different approaches to coarsening or interpolation:
 - FuhrmannKickinger

AMG: What is Algebraic Multigrid??

- Other approaches that are important, novel, historical, or weird:
- Multigraph methods (Bank & Smith)
- Aggregation methods (Braess; Chan & Zikatanov & Xu)
- Smoothed Aggregation methods (Mandel & Brezina & Vanek)
- Black Box Multigrid (Dendy, Dendy & Bandy)
- Algebraic Multilevel Recursive Solver (Saad)
- Element based algebraic multigrid (Chartier; Cleary et al)
- MultiCoarse correction with Suboptimal Operators (Sokol)
- Multilevel block ILU methods (Jang & Saad; Bank & Smith & Wagner; Reusken)
- AMG based on Element Agglomeration (Jones & Vassilevski)
- Sparse Approximate Inverse Smoothers (Tang & Wan)
- •Algebraic Schur-Complement approaches (Axelsson &

Highlights of Multigrid: The 1-d Model Problem

- Poisson's equation: -u = f in [0,1], with boundary conditions u(0) = u(1) = 0.
- Discretized as:

$$\frac{-u_{i-1} + 2u_i - u_{i+1}}{h^2} = f_i \qquad u_0 = u_N = 0$$

• Leads to the Matrix equation Au = f, where

Highlights of Multigrid: Weighted Jacobi Relaxation

Consider the iteration:

$$u_i^{(new)}$$
 $(1-)u_i^{(old)} + \frac{1}{2h^2}(u_{i-1}^{(old)} + u_{i+1}^{(old)} + f_i)$

• Letting A = D + L + U, the matrix form is:

$$u^{(new)} = [(1-)I - D^{-1}(L+U)]u^{(old)} + D^{-1}f$$
$$= G u^{(old)} + D^{-1}f$$

• It is easy to see that if $e \dots u^{(exact)} - u^{(approx)}$, then

$$e^{(new)} = G e^{(old)}$$

Highlights of Multigrid: Relaxation Typically Stalls

• The eigenvectors of G are the same as those of A, and are Fourier Modes: $v_i = \sin(ik / N)$, k = 1, 2, ?, N-1

• The eigenvalues of G are $1-2 \sin^2(k/2N)$, so the effect of relaxation on the modes is:

Highlights of Multigrid: Relaxation Smooths the Error

Initial error,

Error after 35 iteration sweeps:

Many relaxation schemes have the smoothing property, where oscillatory modes of the error are eliminated effectively, but smooth modes are damped very slowly.

Highlights of Multigrid: Smooth error can be represented on a coarse grid

A smooth function:

Can be represented by linear interpolation from a coarser grid:

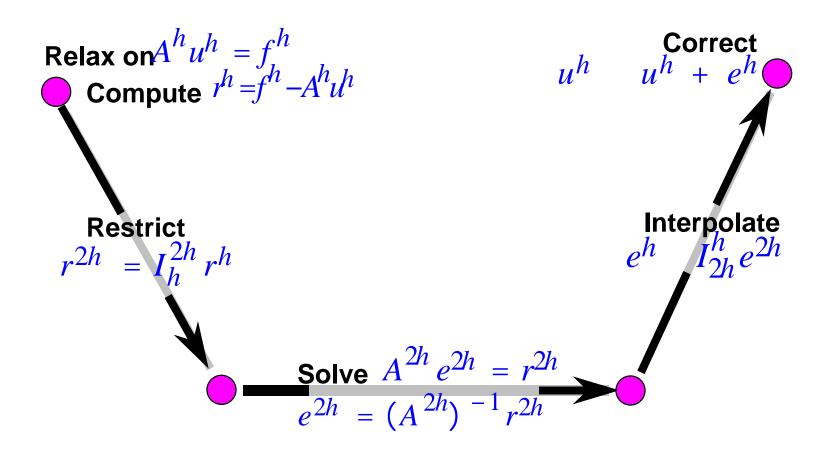
On the coarse grid, the smooth error appears to be relatively higher in frequency: in the example it is the 4-mode, out of a possible 16, on the fine grid, 1/4 the way up the spectrum. On the coarse grid, it is the 4-mode out of a possible 8, hence it is 1/2 the way up the spectrum.

Relaxation will be more effective on this mode if done on the coarser grid!!

Highlights of Multigrid: Coarse-grid Correction

- Perform relaxation on $A^h u^h = f^h$ on fine grid until error is smooth.
- Compute residual, $r^h = f^h A^h u^h$ and transfer to the coarse grid $r^{2h} = I_h^{2h} r^h$.
- Solve the coarse-grid residual equation to obtain the error: $A^{2h}e^{2h} = r^{2h}$. $e^{2h} = (A^{2h})^{-1}r^{2h}$
- Interpolate the error to the fine grid and correct the fine-grid solution: $u^h = u^h + I_{2h}^h e^{2h}$

Highlights of Multigrid: Coarse-grid Correction



Highlights of Multigrid: Tools Needed

Interpolation and restriction operators:

Linear Injection Full-weighting

Interpolation

- Coarse-grid Operator A^{2h} . Two methods:
 - (1) Discretize equation at larger spacing
 - (2) Use Galerkin Formula:

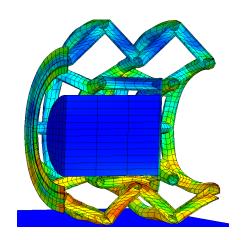
$$A^{2h} = I_h^{2h} A^h I_{2h}^h$$

Highlights of Multigrid:

Recursion: the (,0) V-cycle

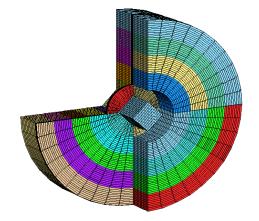
 Major question: How do we "solve" the coarse-grid residual equation? Answer: recursion!

Algebraic multigrid: for unstructured-grids



- Automatically defines coarse "grid"
- AMG has two distinct phases:
 - setup phase: define MG components
 - solution phase: perform MG cycles
- AMG approach is opposite of geometric MG
 - fix relaxation (point Gauss-Seidel)
 - choose coarse "grids" and prolongation, P, so that error not reduced by relaxation is in range(P)
 - define other MG components so that coarse-grid correction eliminates error in range(P) (i.e., use Galerkin principle)

(in contrast, geometric MG fixes coarse grids, then defines suitable operators and smoothers)



AMG has two phases:

Setup Phase

- Select Coarse "grids," m+1, $m=1,2,\ldots$
- Define interpolation, I_{m+1}^m , m = 1, 2, ...
- Define restriction and coarse-grid operators

$$I_m^{m+1} = (I_{m+1}^m)^T$$
 $A^{m+1} = I_m^{m+1} A^m I_{m+1}^m$

Solve Phase

— Standard multigrid operations, e.g., V-cycle, W-cycle, FMG, etc

In AMG, we choose relaxation first:

Typically, pointwise Gauss-Seidel is used

$$A = (D + L + U)$$

• The iteration is developed:

$$Ax = b$$

$$(D+L)x = b - Ux$$

$$x^{new} = (D+L)^{-1}b - (D+L)^{-1}Ux^{old}$$

• Add and subtract $(D+L)^{-1}(D+L) x^{old}$ to get:

$$x^{new} = x^{old} + (D+L)^{-1} r^{old}$$

Gauss-Seidel relaxation error propagation:

• The iteration is:

$$x^{new} = x^{old} + (D+L)^{-1} r^{old}$$

Subtracting both sides from the exact solution:

$$x^{exact} - x^{new} = x^{exact} - (x^{old} + (D+L)^{-1} r^{old})$$
$$e^{new} = e^{old} - (D+L)^{-1} r^{old}$$

• Using r = A e this can be written as:

$$e^{new} = \left[I - (D+L)^{-1} A\right] e^{old}$$

An observation: error that is slow to converge ! "small" residuals

Consider the iterative method error recurrence

$$e^{k+1} = (I-Q^{-1}A)e^k$$

Error that is slow to converge satisfies

$$(I-Q^{-1}A)e e ? Q^{-1}Ae 0$$

? $r 0$

Perhaps a better viewpoint is

$$(I-Q^{-1}A)e e ? \langle Q^{-1}Ae, Ae \rangle \ll \langle e, Ae \rangle$$

Some implications of slow convergence

- For most iterations (e.g., Jacobi or Gauss-Seidel) this last holds if $\langle D^{-1}Ae, Ae \rangle \ll \langle e, Ae \rangle$. (1)
- Hence $\sum_{i=1}^{N} \frac{r_i^2}{a_{ii}} \ll \sum_{i=1}^{N} r_i e_i$ implying that, on average,

$$|r_i| \ll a_{ii} |e_i|$$

• An implication is that, if e is an error slow to converge, then locally at least, e_i can be well-approximated by an average of its neighbors:

In Multigrid, error that is slow to converge is geometrically smooth

 Combining the algebraic property that slow convergence implies "small residuals" with the observation above, in AMG we DEFINE smooth error:

 Smooth error is that error which is slow to converge under relaxation, that is,

$$(I-Q^{-1}A)e$$
 e or, more precisely,

$$||(I - Q^{-1}A) e||_A ||e||_A$$

But sometimes, smooth error isn't! (example from Klaus Stueben)

Consider the problem

$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x, y)$$

 on the unit square, using a regular Cartesian grid, with finite difference stencils and values for

a, **b**, and **c**:

a, b, and c.	
a=1	A=1
b=1000	b=1
c=0	c=2
a=1	a=1000
b=1	b=1
c=0	c=0

$$u_{xx} = h^{-2}[1 -2 1]$$

$$u_{yy} = \frac{1}{h^2} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

$$u_{xy} = \frac{1}{2h^2} \begin{bmatrix} -1 & 1 \\ 1 & -2 & 1 \\ 1 & -1 \end{bmatrix}$$

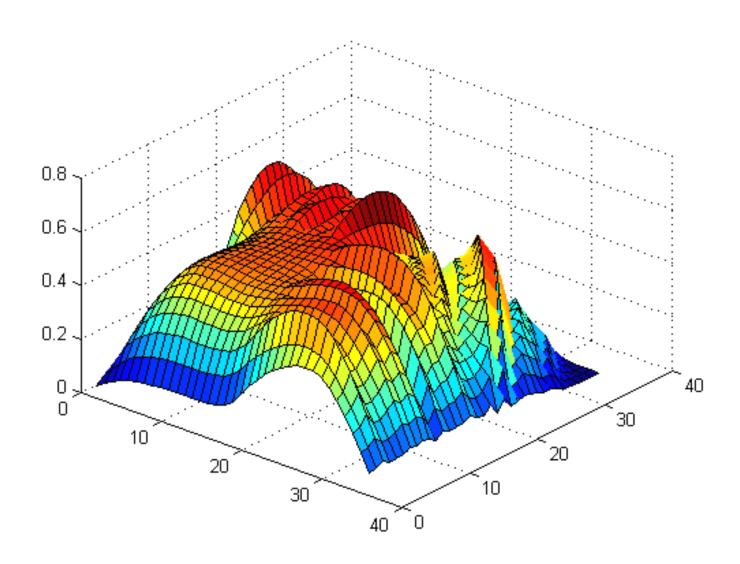
But sometimes, smooth error isn't!

$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

 Using a zero right-hand side and a random initial guess, after 8 sweeps of Gauss-Seidel iteration the error is unchanging in norm. By our definition, the error is smooth. And it looks like this:

Smooth error for

$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x, y)$$



AMG uses dependence (influence) to determine MG components

- We need to choose a subset of the gridpoints (coarse grid) that can be used 1) to represent smooth errors, and 2) to interpolate these errors to the fine grid.
- Intuitively, a point u_j is a good candidate for a C-point if its value is important in determining the value of another point, u_i in the ith equation.
- If the a_{ij} coefficient is "large" compared to the other off-diagonal coefficients in the ith equation then u_i influences u_i (or u_i depends on u_j).

Dependence and smooth error

• For M-matrices, we define "i depends on j" by

$$-a_{ij}$$
? $\max_{k?i} \{-a_{ik}\}, 0 < 1$

alternatively, " j influences i. "

• It is easy to show from (1) that smooth error satisfies $\langle Ae, e \rangle \ll \langle De, e \rangle$ (2)

Dependence and smooth error

For M-matrices, we have from (2)

$$\frac{1}{2} \frac{-a_{ij}}{2a_{ii}} \frac{e_i - e_j}{e_i} \stackrel{?}{=} 1$$

- If e_i does not depend on e_j then the inequality may be satisfied because a_{ij} is "small".
- If e_i does depend on e_j , then a_{ij} need not be small, and the inequality must be satisfied by
- This implies that smooth error varies slowly in the direction of dependence.

Some useful definitions

• The set of dependencies of a variable u_i , that is, the variables upon whose values the value of u_i depends, is defined as

$$S_i = j: -a_{ij} > \max_{k?i} \{ -a_{ik} \} ?$$

• The set of points that u_i influences is denoted:

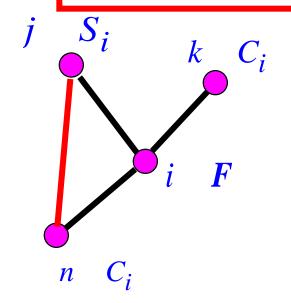
$$S_i^T \dots \{j: i \mid S_j\}$$

More useful definitions

- The set of coarse-grid variables is denoted C.
- The set of fine-grid variables is denoted F.
- The set of coarse-grid variables used to interpolate the value of the fine-grid variable u_i , called the coarse interpolatory set for i, is denoted C_i .

Two Criteria for Choosing the Coarse Grid Points

- First Criterion: F F dependence
 - (C1) For each i F, each point j S_i should either be in C itself or should depend on at least one point in C_i .



Since the value of i depends on the value of i, the value of i must be represented on the coarse-grid for good interpolation. If isn't i point, it should depend on a point in i so its value is "represented" in the interpolation.

CASC

Two Criteria for Choosing the Coarse Grid Points

- Second Criterion: Maximal Subset
 - (C2) C should be a maximal subset with the property that no C-point depends on another.
 - (C1) tends to increase the number of C-points. In general, the more C-points on , the better the h-level convergence.
 - But more C-points means more work for relaxation and interpolation.
 - (C2) is designed to limit the size (and work) of the coarse grid.

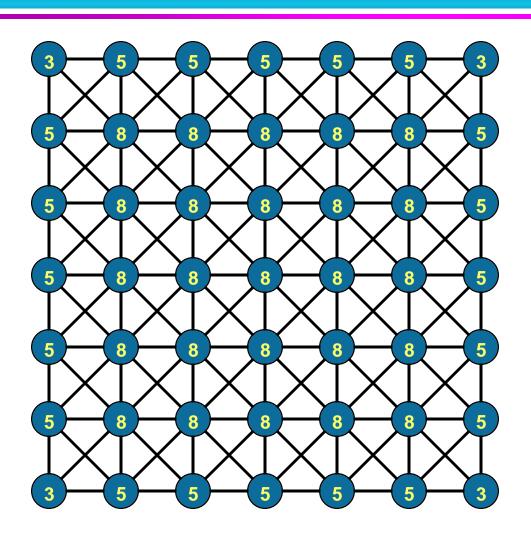
Two Criteria for Choosing the Coarse Grid Points

- It is sometimes not possible to satisfy both criteria simultaneously (an example will be seen shortly).
- In those cases, we choose to satisfy (C1), the requirement that F-F dependencies be represented in the coarse-interpolatory set, while using (C2) as a guide.
- This choice leads to somewhat larger coarse grids, but tends to preserve good convergence properties.

Choosing the Coarse Grid Points

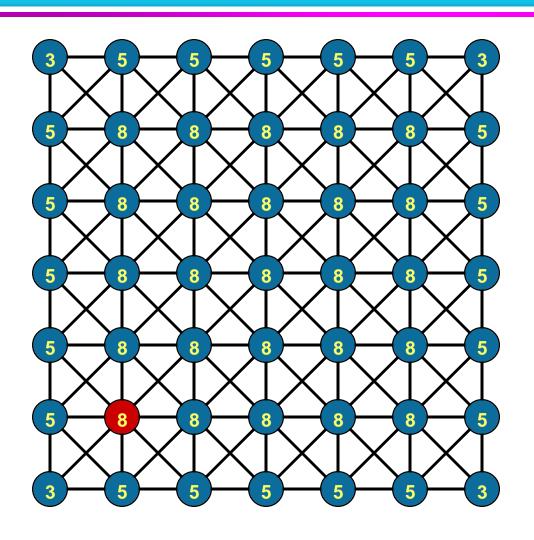
- Assign to each gridpoint k a "value" equal to the number of points that depend on k.
- Choose the first point with global maximum value as a C-point.
- The new C-point can be used to interpolate values of points it influences. Assign them all as F-points.
- Other points influencing these new F-points can be used in their interpolation. Increment their value.
- Repeat until all points are C- or F-points.

Ruge AMG: start



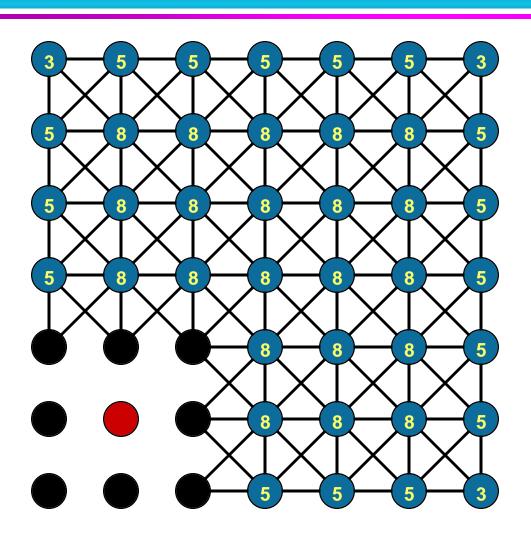
- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt 1



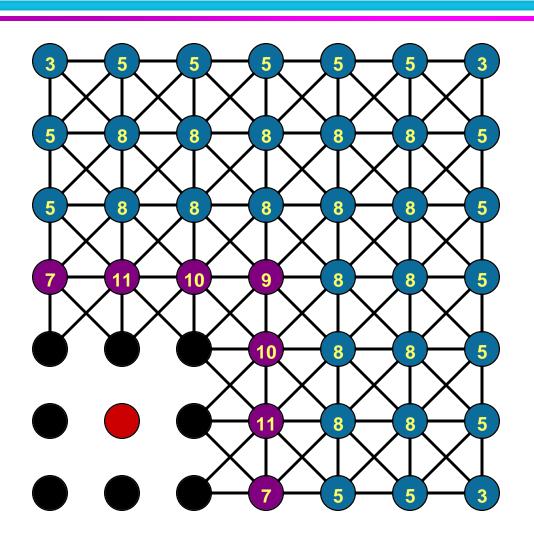
- → select next C-pt
 with maximal
 measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select F- pt 1



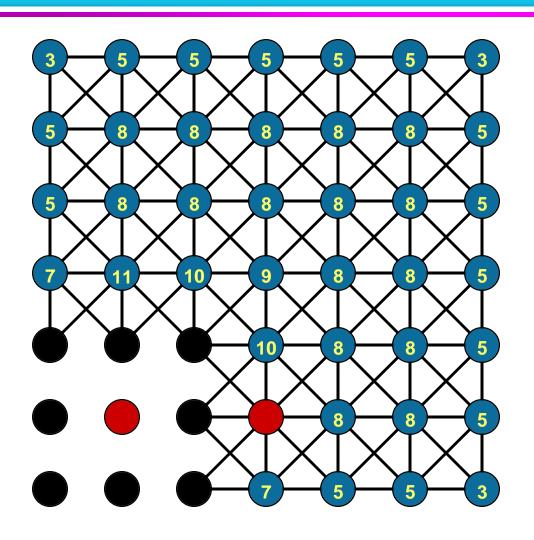
- select C-pt with maximal measure
- → select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: update F-pt neighbors 1



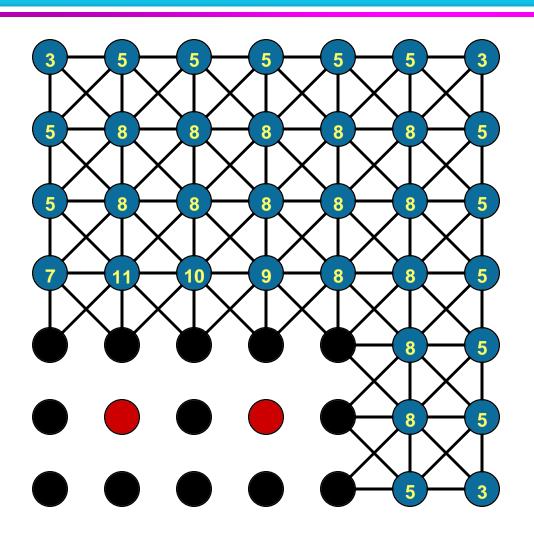
- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt 2



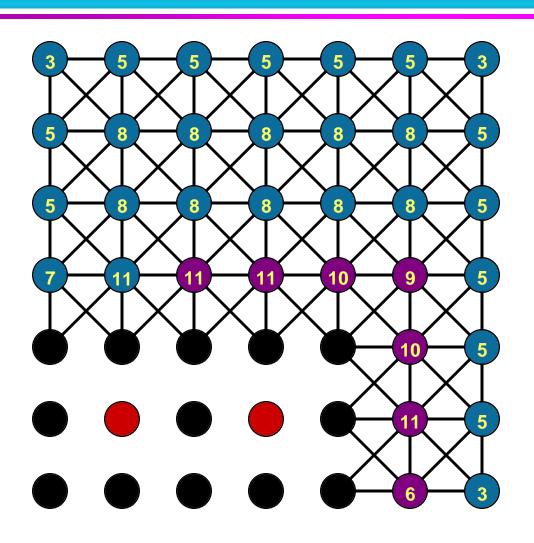
- → select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select F- pt 2



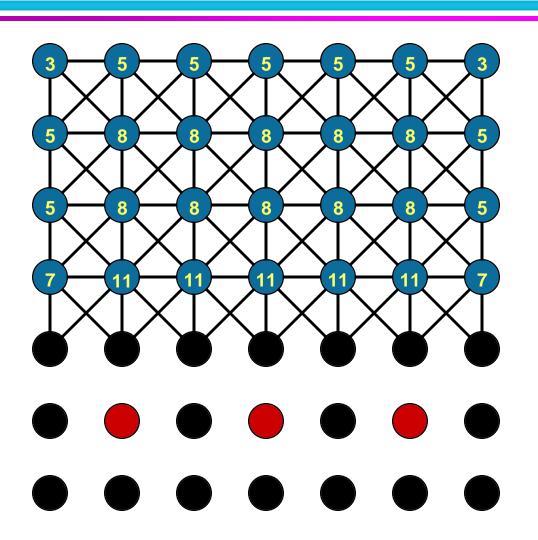
- select next C-pt with maximal measure
- → select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: update F- pt neighbors 2



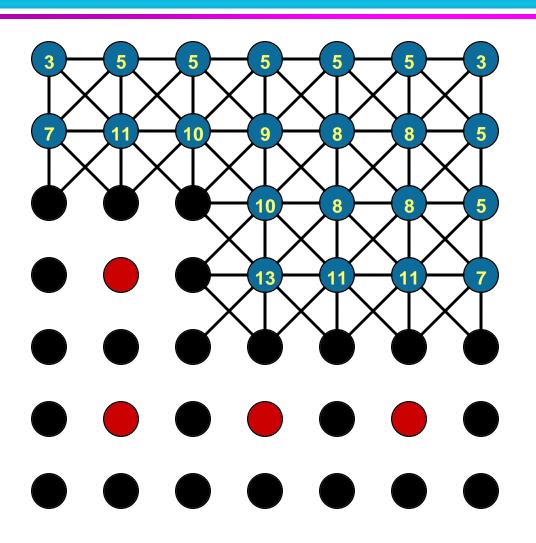
- → select next C-pt
 with maximal
 measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt, F-pts, update neighbors 3



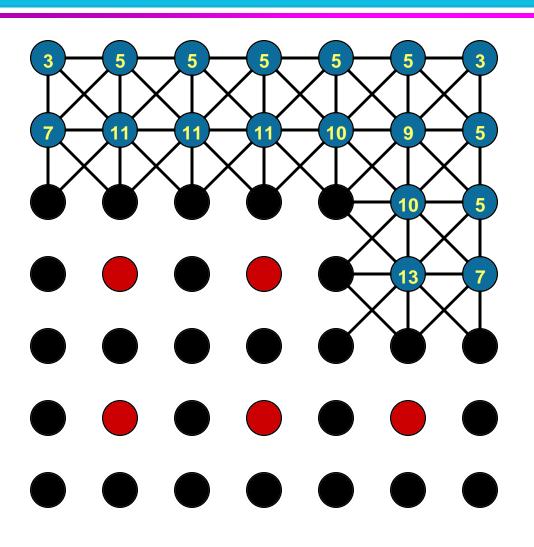
- → select next C-pt
 with maximal
 measure
- → select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt, F-pts, update neighbors 4



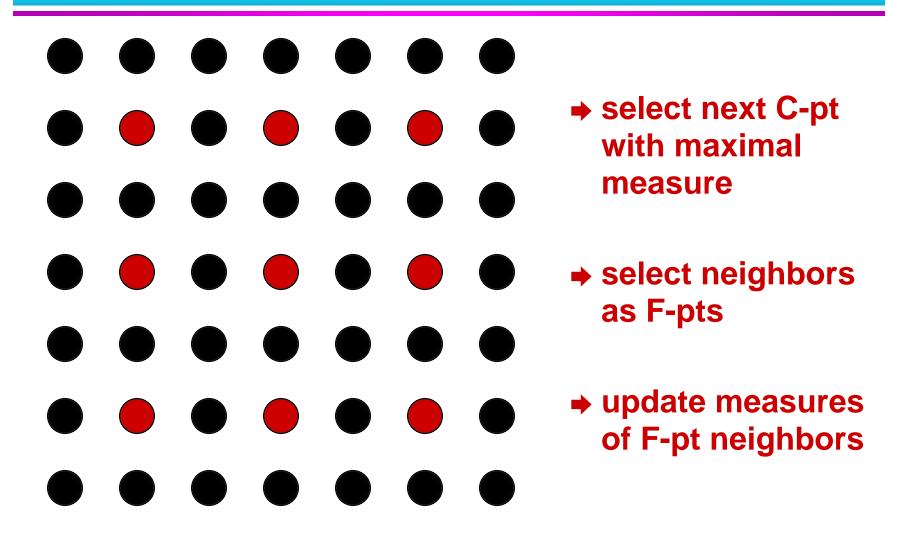
- → select next C-pt
 with maximal
 measure
- → select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt, F-pts, update neighbors 5



- → select next C-pt
 with maximal
 measure
- → select neighbors as F-pts
- update measures of F-pt neighbors

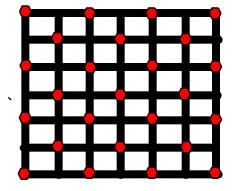
Ruge AMG: select C-pt, F-pts, update neighbors 6,7,8,9



Examples: Laplacian Operator

5-pt FD, 9-pt FE (quads), and 9-pt FE (stretched quads)

5-pt FD

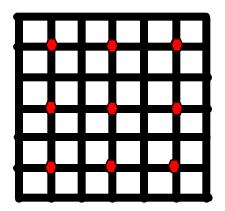


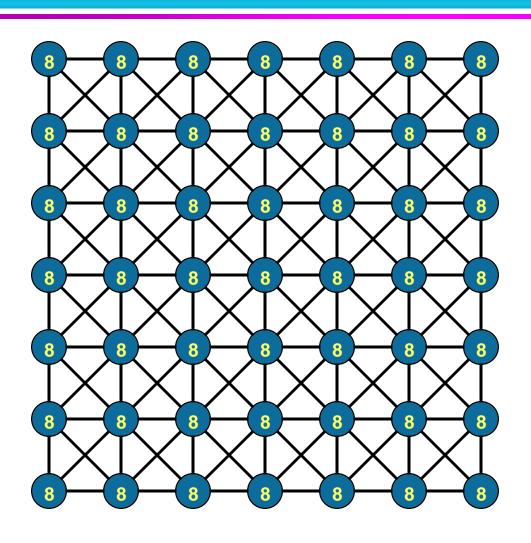
9-pt FE (quads)

$$-1$$
 -1 -1

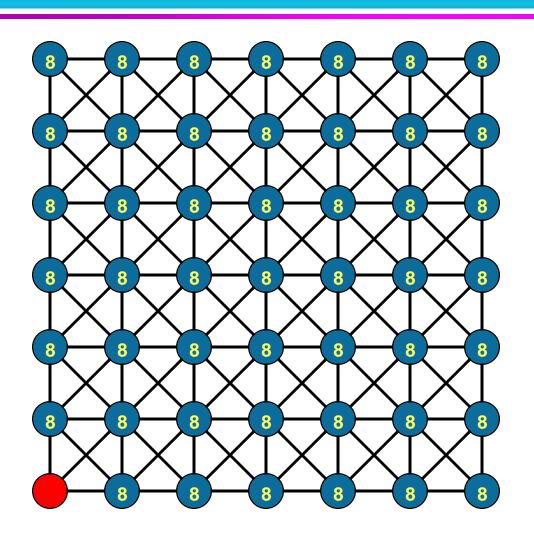
$$-1 8 -1$$

$$-1$$
 -1 -1

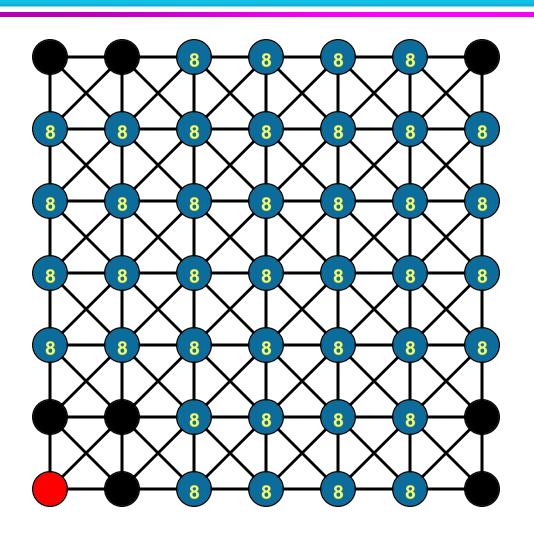




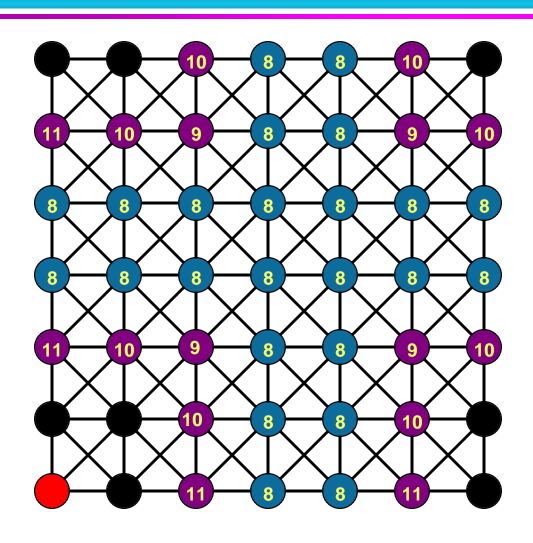
- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors



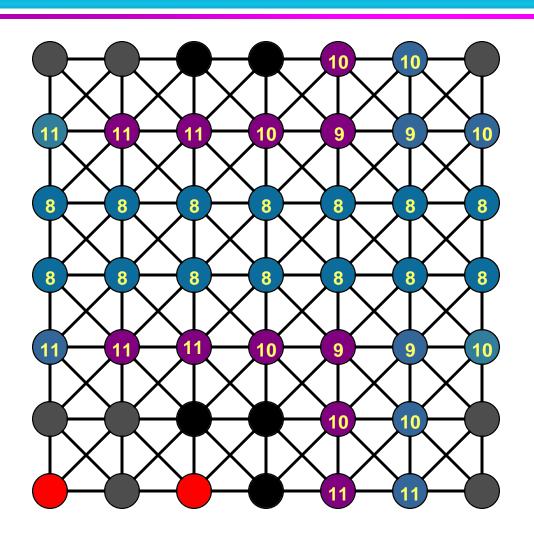
- → select C- pt with maximal measure
- select neighbors as F- pts
- update measures of F-pt neighbors



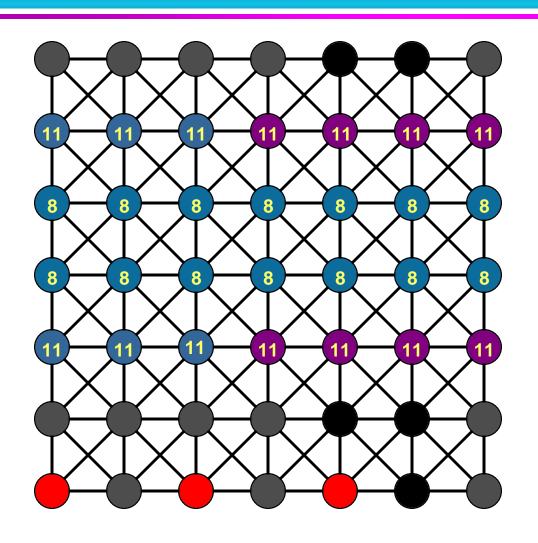
- ⇒ select C-pt with maximal measure
- select neighbors as F- pts
- update measures of F- pt neighbors



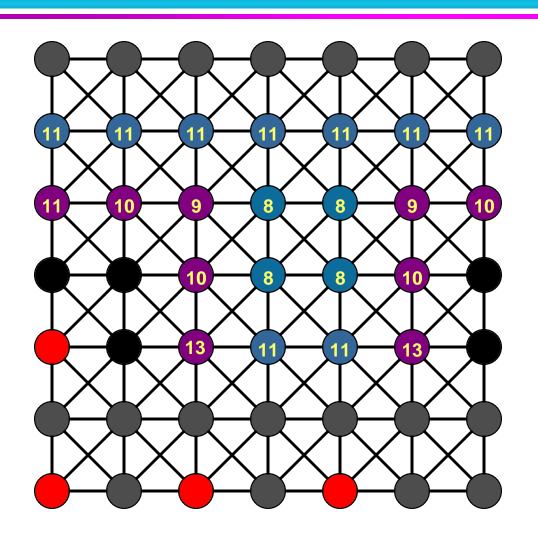
- select C-pt with maximal measure
- select neighbors as F- pts
- update measures of F-pt neighbors



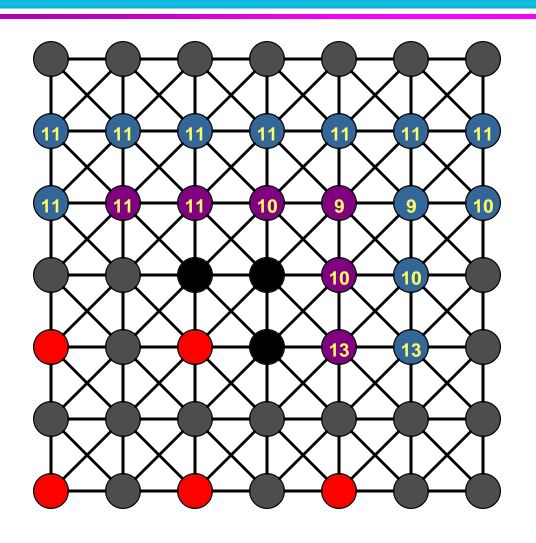
- → select C- pt with maximal measure
- select neighbors as F- pts
- update measures of new F- pt neighbors



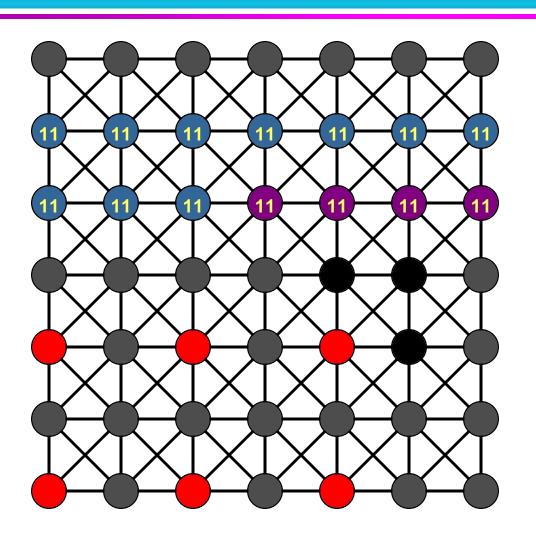
- → select C- pt with maximal measure
- select neighbors as F- pts
- update measures of new F- pt neighbors



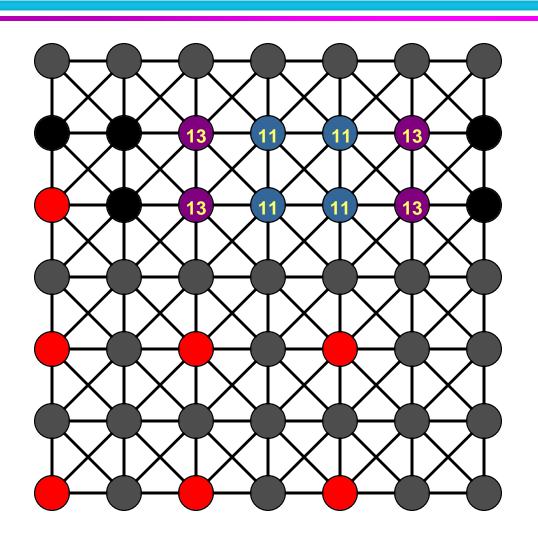
- select C- pt with maximal measure
- select neighbors as F- pts
- update measures of new F- pt neighbors



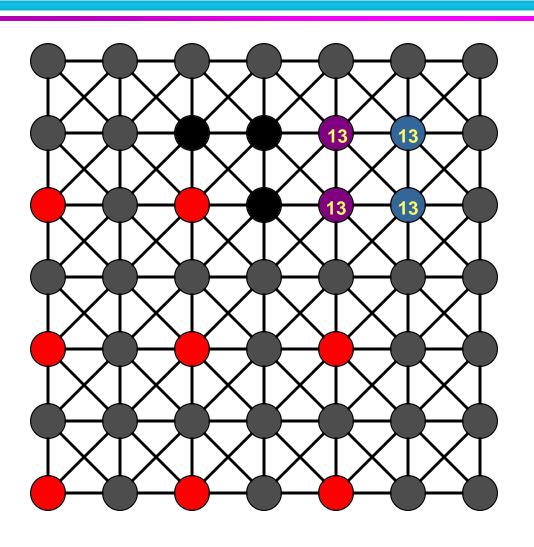
- select C- pt with maximal measure
- select neighbors as F- pts
- update measures of new F- pt neighbors



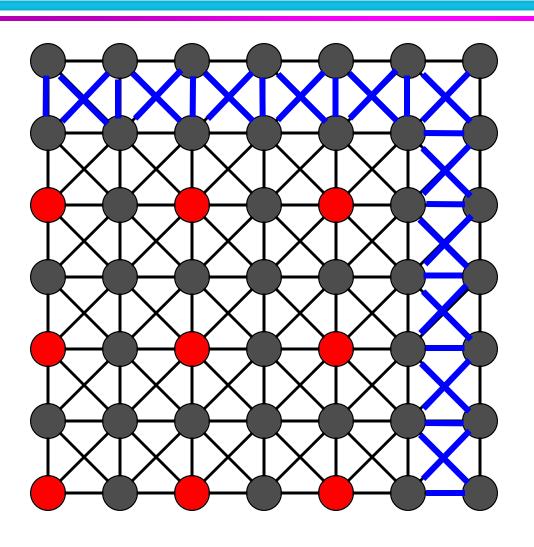
- select C- pt with maximal measure
- select neighbors as F- pts
- update measures of new F- pt neighbors



- → select C- pt with maximal measure
- select neighbors as F- pts
- update measures of new F- pt neighbors

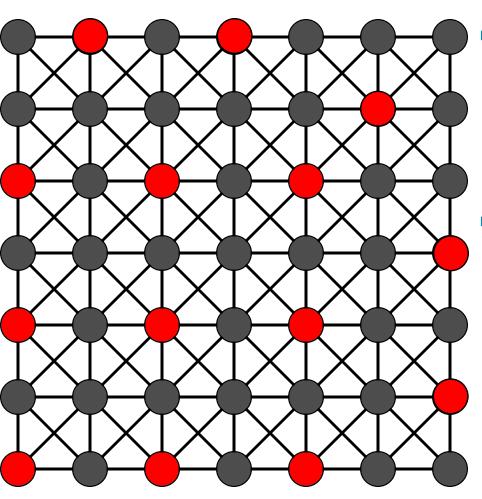


- select C- pt with maximal measure
- select neighbors as F- pts
- update measures of new F- pt neighbors



→ Modulo periodicity, it's the same coarsening as in the Dirichlet case.

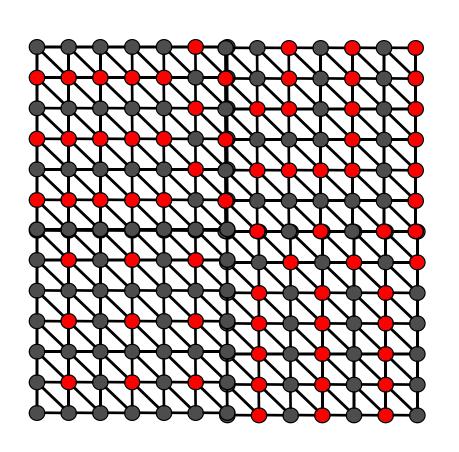
→ However, it has many F- F connections that do not share a common C-point



→ A second pass is made in which some F- points are made into C- points to enforce (C1).

→ Goals of the second pass include minimizing C-C connections, and minimizing the number of C-points converted to F-points.

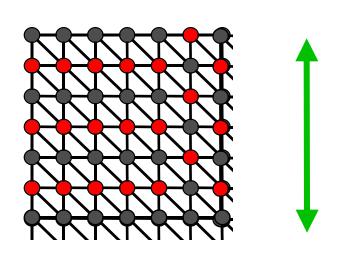
$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

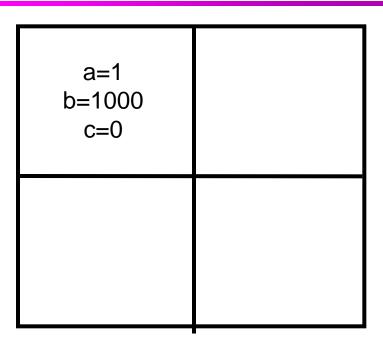


a=1	A=1
b=1000	b=1
c=0	c=2
a=1	a=1000
b=1	b=1
c=0	c=0

▶ In each region, AMG coarsens only in the direction of dependence!

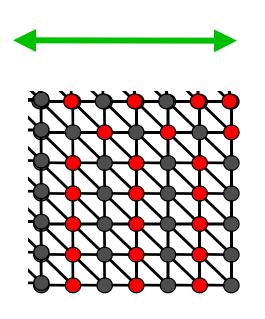
$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

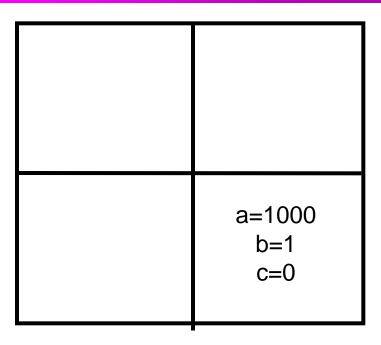




→ In each region, AMG coarsens only in the direction of dependence!

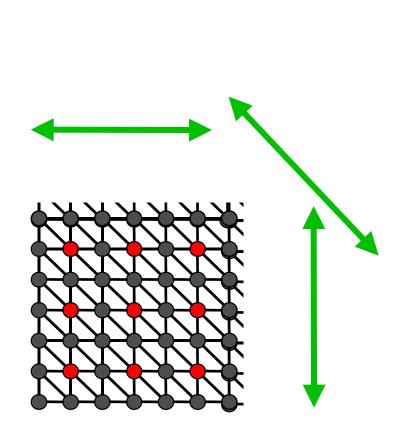
$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

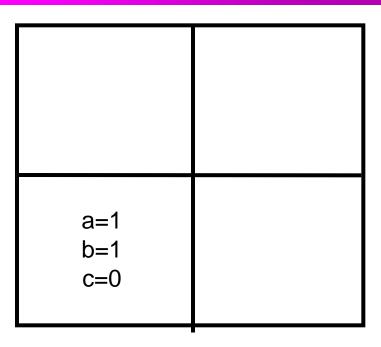




▶ In each region, AMG coarsens only in the direction of dependence!

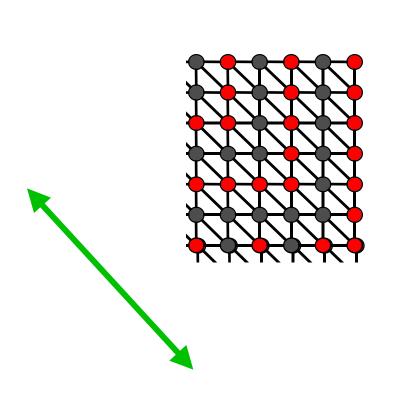
$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$

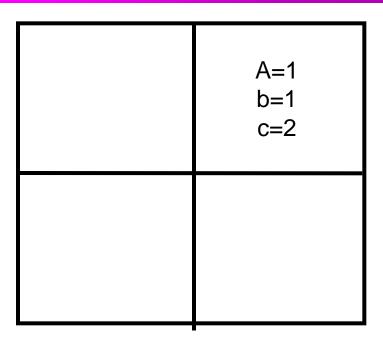




▶ In each region, AMG coarsens only in the direction of dependence!

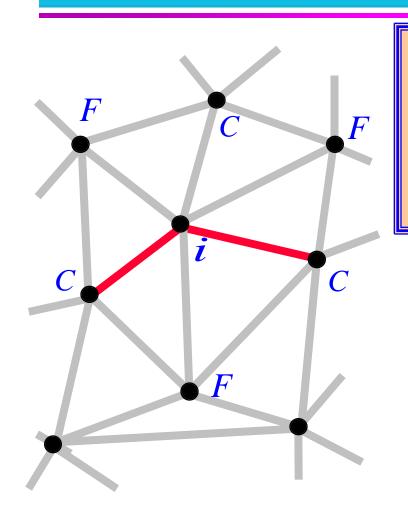
$$-(a u_x)_x - (b u_y)_y + c u_{xy} = f(x,y)$$





→ In each region, AMG coarsens only in the direction of dependence!

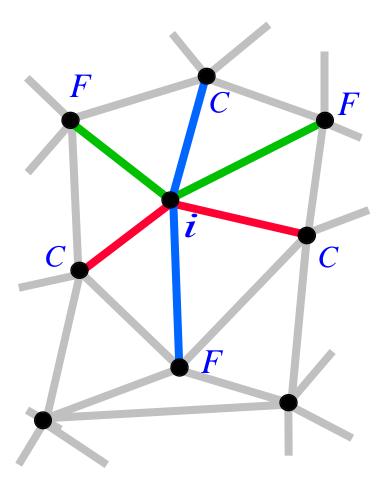
Prolongation



$$\begin{aligned}
e_i &, i & C \\
(Pe)_i &= & & \\
ik & e_k &, i & F \\
k & C_i
\end{aligned}$$

The interpolated value at point i is just e_i if i is a C-point. If i is an F-point, the value is a weighted sum of the values of the points in the coarse interpolatory set

To define prolongation at i, we must examine the types of connections of u_i .



Sets of connection types:

i is dependent on these coarse interpolatory C-points.

 D_i^s

i is dependent on these F-points.

 D_i^W

i does not depend on these "weakly connected" points, which may be C- or F-

Prolongation is based on smooth error and dependencies (from M-matrices)

Recall that smooth error is characterized by "small" residuals:

$$r_i = a_{ii} e_i + a_{ij} e_j \quad 0$$

$$j \quad N_i$$

which we can rewrite as:

$$a_{ii}e_i - a_{ij}e_j$$
 $j?i$

We base prolongation on this formula by "solving" for e_i and making some approximating substitutions.

Prolongation is based on smooth error and dependencies (from M-matrices)

We begin by writing the smooth-error relation:

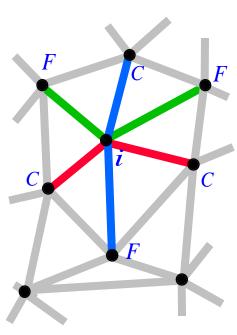
$$a_{ii}e_i - a_{ij}e_j$$

Identifying its component sums:

$$a_{ii}e_i$$
 - $a_{ij}e_j$ -

We must approximate e_j in each of the last two sums in terms of e_i or of e_j for j C_i .

For the weak connections: let e_i .



$$a_{ii}e_i$$
 — $a_{ij}e_j$ — $a_{ij}e_j$ — $a_{ij}e_j$ — $a_{ij}e_j$ — i —

Effectively, this throws the weak connections onto the diagonal:

$$a_{ii} + a_{ij} e_i - a_{ij} e_j - a_{ij} e_j$$

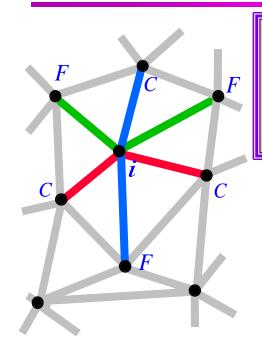
$$j D_i^w j C_i j D_i^s$$

This approximation can't hurt too much:

• Since the connection is weak.

• If i depended on points in D_i^r , smooth error varies slowly in the direction of dependence

For the F-point dependencies: use a weighted avg. of errors in C_i



CASC

$$a_{ii}$$
 + a_{ij} e_i - $a_{ij}e_j$ - $a_{ij}e_j$ j D_i^s j D_i^s Coarse interpolatory set dependencies

Approximate e_j by a weighted average of the e_k in the coarse interpolatory set

$$e_{j} = \frac{a_{jk}e_{k}}{k}$$

$$e_{j} = \frac{a_{jk}}{k}$$

$$k = C_{i}$$

It is for this reason that the intersection of the coarse interpolatory sets of two F-points with a dependence relationship must be nonempty (C1).

Finally, the prolongation weights are defined

Making the previous substitution, and with a bit of messy algebra, the smooth error relation can be "solved" for e_i to yield the interpolation formula:

$$egin{array}{ccc} e_i & & & ij \ e_j \ & & j \ & C_i \end{array}$$

where the prolongation weights are given:

$$a_{ij} + \frac{a_{ik}a_{kj}}{a_{km}}$$

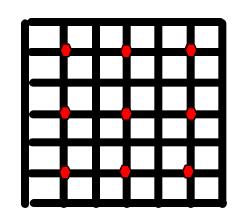
$$ij = -\frac{a_{ij} + \frac{a_{ik}a_{kj}}{a_{km}}}{a_{in} + a_{in}}$$

$$n D_i^w$$

Highlights of Multigrid: Storage: f^h, u^h must be stored each level

In 1-d, each coarse grid has about half the number of points as the finer grid.

● In 2-d, each coarse grid has about onefourth the number of points as the finer grid.



In d-dimensions, each coarse grid has about 2^{-d} the number of points as the

finer grid.

• Storage cost: $2N^d (1 + 2^{-d} + 2^{-2d} + 2^{-3d} + ? + 2^{-Md}) < \frac{2N^a}{1 - 2^{-d}}$

less than 2, 4/3, 8/7 the cost of storage on the fine grid for 1, 2, and 3-d problems, respectively.

AMG storage: grid complexity

- For AMG there is no simple predictor for total storage costs. u^m , f^m , and $A^m = I_{m-1}^m A^{m-1} I_m^{m-1}$ must be stored on all levels.
- Define , the grid complexity, as the total number of unknowns (gridpoints) on all levels, divided by the number of unknowns on the finest level. Total storage of the vectors \boldsymbol{u} and \boldsymbol{f} occupy $\boldsymbol{2}$ storage locations.

AMG storage: operator complexity

• Define A, the operator complexity, as the total number of nonzero coefficients of all operators A divided by the number of nonzero coefficients in the fine-level operator A. Total storage of the operators occupies A storage locations.

AMG storage: interpolation

- We could define I, an interpolation complexity, as the total number of nonzero coefficients of all operators I_m^{m+1} divided by the number of nonzero coefficients in the operator I_0 . This measure is not generally cited, however (like most multigridders, the AMG crowd tends to ignore the cost of intergrid transfers).
- Two measures that occasionally appear are A , the average "stencil size," and I , the average number of interpolation points per F- point.

AMG Setup Costs: flops

- Flops in the setup phase are only a small portion of the work, which includes sorting, maintaining linked-lists, keeping counters, storage manipulation, and garbage collection.
- Estimates of the total flop count to define interpolation weights (^I) and the coarse-grid operators (^A) are:

$$A = N I (2 I (A - I) + 3 I + A)$$
and
 $I = N I (3 (A - I) - 2)$

AMG setup costs: a bad rap

Many geometric MG methods need to compute prolongation and coarse-grid operators

 The only additional expense in the AMG setup phase is the coarse grid selection algorithm

• AMG setup phase is only 10-25% more expensive than in geometric MG and may be considerably less than that!

Highlights of Multigrid: Computation Costs

- Let 1 Work Unit (WU) be the cost of one relaxation sweep on the fine-grid.
- Ignore the cost of restriction and interpolation (typically about 20% of the total cost). (See?)
- Consider a V-cycle with 1 pre-Coarse-Grid correction relaxation sweep and 1 post-Coarse-Grid correction relaxation sweep.
- Cost of V-cycle (in WU):

$$2(1+2^{-d}+2^{-2d}+2^{-3d}+?+2^{-Md}) < \frac{2}{1-2^{-d}}$$

Cost is about 4, 8/3, 16/7 WU per V-cycle in 1,
2, and 3 dimensions.

AMG Solve Costs: flops per cycle

• The approximate number of flops in on level m for one relaxation sweep, residual transfer, and interpolation are (respectively)

$$2N_m^A + 2 I N_m^F \qquad N_m^C + 2 I N_m^F$$

where N_m^A is the number of coefficients in A^m and N_m^C , N_m^F are the numbers of C-, F-points on

• The total flop count for a $\binom{1}{2}$ V-cycle, noting that N_m^F N and letting = $\binom{1}{2}$ is approximately

$$N(2(+1)^{A} + 4^{I} + -1)$$

m

AMG Solve Costs: flops per cycle, again

 All that is very well, but in practice we find the solve phase is generally dominated by the cost of relaxation and computing the residual.

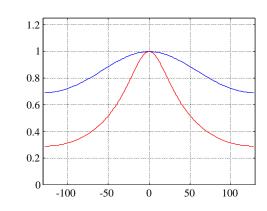
- Both of those operations are proportional to the number of nonzero entries in the operator matrix on any given level.
- Thus the best measure of the ratio of work done on all levels to the work done on the finest level is operator complexity: A

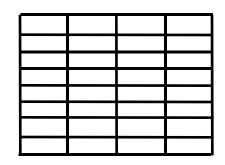
Highlights of Multigrid: difficultiesanisotropic operators and grids

- Consider the operator: $-\frac{f^2u}{fx^2} \frac{f^2u}{fy^2} = f(x, y)$
- If « then the GS-smoothing factors in the x- and y-directions are shown at right.

Note that GS relaxation does not damp oscillatory components in the x-direction.

 The same phenomenon occurs for grids with much larger spacing in one direction than the other:





Highlights of Multigrid: difficulties-discontinuous or anisotropic coefficients

• Consider the operator : - (D(x, y) u) where

$$D(x,y) = \begin{cases} d_{11}(x,y) & d_{12}(x,y) \\ d_{21}(x,y) & d_{22}(x,y) \end{cases}$$

- Again, GS-smoothing factors in the x- and y-directions can be highly variable, and very often, GS relaxation does not damp oscillatory components in the one or both directions.
- Solutions: line-relaxation (where whole gridlines of values are found simultaneously), and/or semicoarsening (coarsening only in the strongly coupled direction).

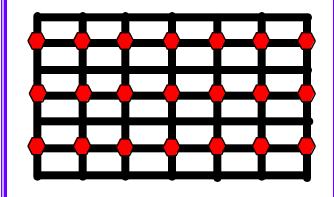
AMG does semi-coarsening automatically!

• Consider the operator :

$$-\frac{f^2u}{fx^2}-\frac{f^2u}{fy^2}=f(x,y)$$

In the limit, as ? × , the stencil becomes:

AMG
 automatically
 produces a
 semi-coarsened
 grid!!



AMG Convergence: there is theory (some)

- There is some theory, although it is of limited utility. It generally looks like:
- **Theorem**
 - Let $A^m \dots A$ be SPD, and let the interpolation operator I_{m+1}^m be full rank, and let restriction

and coarse-grid operators be defined by
$$I_m^{m+1} = (I_{m+1}^m)^T$$
 and $A^{m+1} = I_m^{m+1}A^mI_{m+1}^m$

and let there be smoothing operators G^m and coarse-grid correction operators

$$T^{m} = I^{m} - I_{m+1}^{m} (A^{m+1})^{-1} I_{m}^{m+1} A^{m}$$

AMG Convergence: there is theory (some)

- Theorem (continued)
 - suppose that, for all e^m ,

$$\|G^m e^m\|_A^2 \quad \|e^m\|_A^2 - \|T^m e^m\|_A^2$$

holds for some > 0 independently for all e^m and m.

Then 1, and, provided the coarsest problem is solved and at least one smoothing step is performed after each coarse-grid correction step, the V-cycle has a convergence factor wrt the energy norm bounded above by

$$\sqrt{1-}$$
.

How's it perform (vol I)?

Regular grids, plain, old, vanilla problems

The Laplace Operator:

	Convergence		Time	Setup	
Stencil	per cycle	Complexity	per Cycle	Times	
5- pt	0.054	2.21	0.29	1.63	
5- pt skew	0.067	2.12	0.27	1.52	
9- pt (- 1, 8)	0.078	1.30	0.26	1.83	
9- pt (-1, -4, 20)	0.109	1.30	0.26	1.83	

ullet Anisotropic Laplacian: $-U_{xx}-U_{yy}$

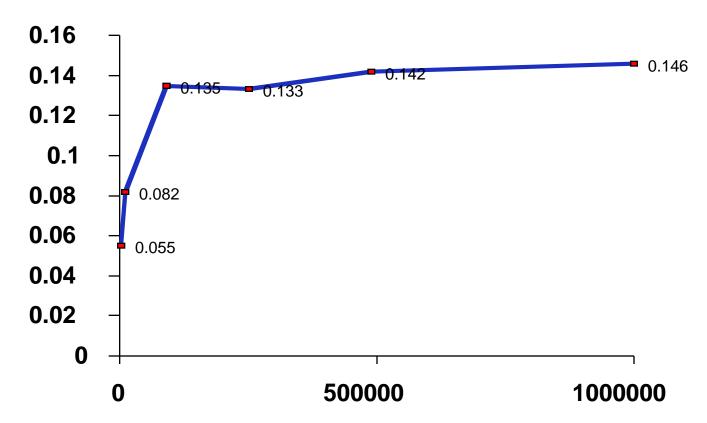
Epsilon	0.001	0.01	0.1	0.5	1	2	10	100	1000
Convergence/cycle	0.084	0.093	0.058	0.069	0.056	0.079	0.087	0.093	0.083

How's it perform (vol II)?

Structured Meshes, Rectangular Domains

5-point Laplacian on regular rectangular grids

Convergence factor (y-axis) plotted against number of nodes (x-axis)



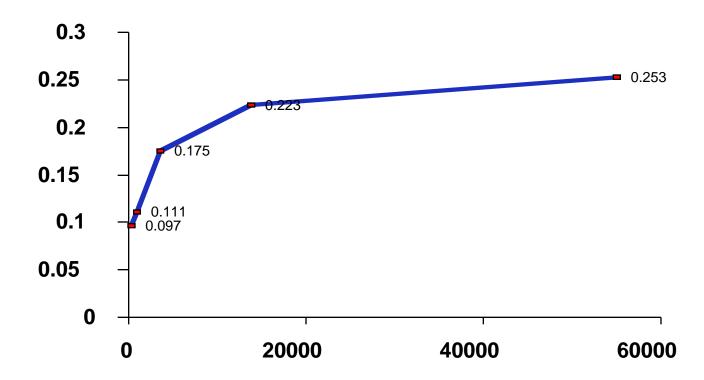
How's it perform (vol III)?

Unstructured Meshes, Rectangular Domains

Laplacian on random unstructured grids (regular)

triangulations, 15-20% nodes randomly collapsed into neighboring nodes)

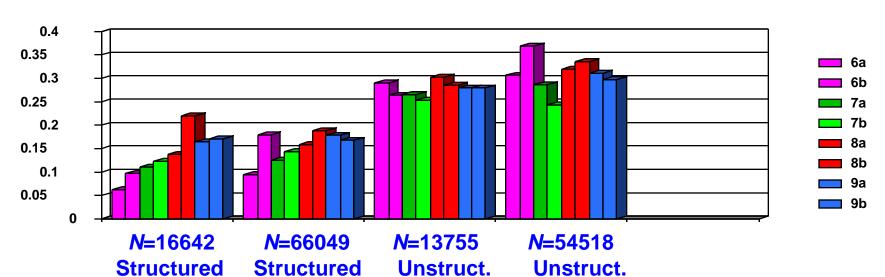
Convergence factor (y-axis) plotted against number of nodes (x-axis)



How's it perform (vol IV)?

Isotropic diffusion, Structured/Unstructured Grids

(d(x,y) u) on structured, unstructured grids



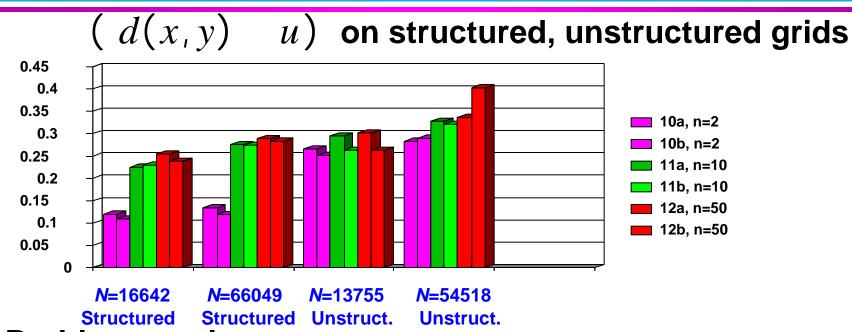
Problems used: "a" means parameter c=10, "b" means c=1000

6:
$$d(x,y) = 1.0 + c |x-y|$$
 8: $d(x,y) = \begin{cases} 1.0 & 0.125 \\ c \end{cases}$ max $\{|x-0.5|, |y-0.5|\}$ 0.25

7:
$$d(x,y) = \begin{cases} 1.0 & x & 0.5 \\ c & x > 0.5 \end{cases}$$
 9: $d(x,y) = \begin{cases} 1.0 & 0.125 \\ c & \text{otherwise} \end{cases}$ 0.25

How's it perform (vol IVa)?

Isotropic diffusion, Structured/Unstructured Grids



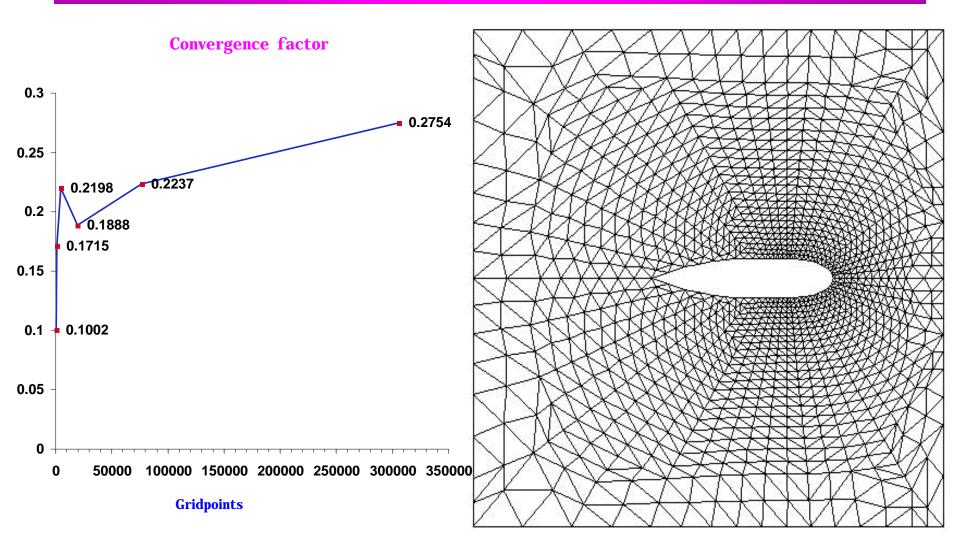
Problem used: "a" means parameter c=10, "b" means c=1000

"Checkerboard" of coefficients 1.0 and *c*, squares sized 1/n:

$$d(x,y) = \begin{cases} 1.0 & \frac{i}{n} & x < \frac{i+1}{n}, \frac{j}{n} & y < \frac{j+1}{n}, i+j \text{ even} \\ c & \frac{i}{n} & x < \frac{i+1}{n}, \frac{j}{n} & y < \frac{j+1}{n}, i+j \text{ odd} \end{cases}$$

How's it perform (vol V)?

Laplacian operator, unstructured Grids

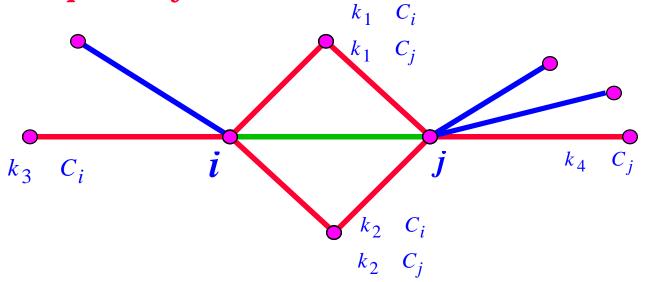


So, what could go wrong?

Strong F-F connections: weights are dependent on each other

- For point i the value e_j is interpolated from k_1 , k_2 , and is needed to make the interpolation weights for approximating e_i .
- For point j the value e_i is interpolated from k_1, k_2 , and is needed to make the interpolation weights for approximating e_i .

It's an implicit system!



CASC

Is there a fix?

• A Gauss-Seidel like iterative approach to weight definition is implemented. Usually two passes suffice. But does it work?

• Frequently, it does:

Convergence factors for

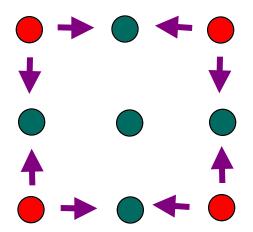
		0.5	0.24	0.14
x = 100	y	0.25	0.83	0.82
$\lambda - 100$		0.5	0.53	0.23

Another Fix: indirect interpolation (see Stueben's text for detail)

• The 5-point problem cannot give "full" coarsening because the F-point in the middle has no connection to any of the 4 C-points. Hence, there is no way to interpolate its value.

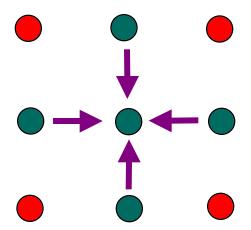
Another Fix: indirect interpolation (see Stueben's text for detail)

- Full coarsening could be achieved by indirect interpolation.
- First interpolate the F-points from the C-points.



Another Fix: indirect interpolation (see Stueben's text for detail)

- Full coarsening could be achieved by indirect interpolation.
- First interpolate the F-points from the C-points.
- Then interpolate the "middle" from the F-points.



Similar treatment could be applied whenever F- F dependencies arise.

AMG for systems

How can we do AMG on systems?

$$\begin{array}{cccc} A_{11} & A_{12} & & u \\ A_{21} & A_{22} & & v & = & g \end{array}$$

• Naïve approach: "Block" approach (block Gauss-Seidel, using scalar AMG to "solve" at each cycle)

$$u \qquad (A_{11})^{-1} (f - A_{12}v)$$

$$v \qquad (A_{22})^{-1} (g - A_{21}u)$$

• Great Idea! Except that it doesn't work! (relaxation does not evenly smooth errors in both unknowns)

AMG for systems: a solution

 To solve the system problem, allow interaction between the unknowns at all levels:

$$A^{k} = \begin{bmatrix} A_{11}^{k} & A_{12}^{k} \\ A_{21}^{k} & A_{22}^{k} \end{bmatrix}$$
 and $I_{k+1}^{k} = \begin{bmatrix} (I_{k+1}^{k})_{u} & 0 \\ 0 & (I_{k+1}^{k})_{v} \end{bmatrix}$

- This is called the "unknown" approach.
- Results: 2-D elasticity, uniform quadrilateral mesh:

 mesh spacing
 0.125
 0.0625
 0.03135
 0.01562

 Convergence factor
 0.22
 0.35
 0.42
 0.44

So, what else can go wrong? Ouch! Thin body elasticity!

• Elasticity, 3-d, thin bodies!

$$u_{xx} + \frac{1 - v_{yy} + u_{zz}}{2} (u_{yy} + u_{zz}) + \frac{1 + v_{yz}}{2} (v_{xy} + w_{xz}) = f_1$$

$$v_{yy} + \frac{1 - v_{xx} + v_{zz}}{2} (v_{xx} + v_{zz}) + \frac{1 + v_{yz}}{2} (u_{xy} + w_{yz}) = f_2$$

$$w_{zz} + \frac{1 - v_{yz}}{2} (w_{xx} + w_{yy}) + \frac{1 + v_{yz}}{2} (u_{xz} + v_{yz}) = f_3$$

 Slide surfaces, Lagrange multipliers, force balance constraints:

$$\begin{array}{ccc} S & T & x_1 \\ U & V & x_2 \end{array} = \begin{array}{c} F_1 \\ F_2 \end{array}$$

• S is "generally" positive definite, V can be zero, $U^T ? T$.

Wanted:

Good solution method for this problem.

REWARD

Needed: more robust methods for characterizing smooth error

 Consider quadrilateral finite elements on a stretched 2D Cartesian grid (dx -> infinity):

$$A = \begin{bmatrix} -1 & -4 & -1 \\ 2 & 8 & 2 \\ -1 & -4 & -1 \end{bmatrix}$$

- Direction of dependence is not apparent here
- Iterative weight interpolation will sometimes compensate for mis-identified dependence
- Elasticity problems are still problematic

Scalability is central for large-scale parallel computing

- A code is scalable if it can effectively use additional computational resources to solve larger problems
- Many specific factors contribute to scalability:
 - architecture of the parallel computer
 - parallel implementation of the algorithms
 - convergence rates of iterative linear solvers

Linear solver convergence can be discussed independent of parallel computing, and is often overlooked as a key scalability issue.

In Conclusion,

AMG Rules!

- Interest in AMG methods is high, and probably still rising, because of the increasing importance of terra-scale simulations on unstructured grids.
- AMG has been shown to be a robust, efficient solver on a wide variety of problems of real-world interest.
- Much research is underway to find effective ways of parallelizing AMG, which is essential to largescale computing.

Acknowledgment

• This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract number:

W- 7405- Eng- 48

Document Release number UCRL - MI - 133749